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Abstract. For the purpose of studying the deductive system (or filter)
of equality algebras by applying the SR-fuzzy set to equality algebras, the
concepts of SR-fuzzy subalgebras and SR-fuzzy deductive systems are in-
troduced and related properties are investigated. Conditions under which
the SR-fuzzy set becomes an SR-fuzzy subalgebra are explored, and the
characterizations of the SR-fuzzy deductive system are discussed. Condi-
tions are found in which the SR-fuzzy set becomes an SR-fuzzy subalgebra,
and the characterizations of the SR-fuzzy deductive system are discussed.
The relationship between SR-fuzzy subalgebra and SR-fuzzy deductive sys-
tem is identified, and an SR-fuzzy deductive system established in a given
deductive system is formed.
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1. Introduction

Intuitionistic fuzzy sets are extensions of classical fuzzy sets, introduced by
Atanasov in 1986. This adds an additional degree of freedom to the traditional
concept of fuzzy sets, taking into account not only the degree of membership, but
also the degree of non-membership and the degree of hesitation or uncertainty about
each element. In the paper [1], Al-shami et al. have proposed a new extension of
the intuitionistic fuzzy set called the SR-fuzzy set which is not obtained from the
q-rung orthopair fuzzy set. And then they introduced novel types of weighted ag-
gregation operators and discussed their main properties. Also they investigated a
MCDM methods depending on these operators. Jenei [2] have introduced a new
structure called an equality algebra, which has two connectives: a meet operation
and an equivalence, and a constant 1. Several scientists have studied various types
of (fuzzy) filters (or deductive systems) in equity algebras (See [3, 4, 5, 6]).
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The purpose of this paper is to study deductive systems (or filters) of equal-
ity algebras by applying the SR-fuzzy set to equality algebras. We introduce the
concepts of SR-fuzzy subalgebras and SR-fuzzy deductive systems, and investigate
some of the relevant properties. We find the conditions under which the SR-fuzzy set
becomes an SR-fuzzy subalgebra. We discuss the characterization of the SR-fuzzy
deductive system. We establish the relationship between the SR-fuzzy subalgebra
and the SR-fuzzy deductive system. We form the SR-fuzzy deductive system, which
is established at a given deductive system.

2. Preliminaries

Definition 2.1 ([2]). By an equality algebra, we mean an algebra (X, ∧, ∼, 1)
satisfying the following conditions:

(E1) (X,∧, 1) is a commutative idempotent integral monoid (i.e., meet semilattice
with the top element 1),

(E2) the operation “∼” is commutative,
(E3) (∀a ∈ X)(a ∼ a = 1),
(E4) (∀a ∈ X)(a ∼ 1 = a),
(E5) (∀a, b, c ∈ X)(a ≤ b ≤ c ⇒ a ∼ c ≤ b ∼ c, a ∼ c ≤ a ∼ b),
(E6) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∧ c) ∼ (b ∧ c)),
(E7) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∼ c) ∼ (b ∼ c)),

where a ≤ b if and only if a ∧ b = a.

In an equality algebra (X, ∧, ∼, 1), we define two operations “→” and “↔” on
X as follows:

a→ b := a ∼ (a ∧ b),(2.1)

a↔ b := (a→ b) ∧ (b→ a).(2.2)

Proposition 2.2 ([2]). Let (X, ∧, ∼, 1) be an equality algebra. Then the following
assertions are valid: for all a, b, c ∈ X,

a→ b = 1 ⇔ a ≤ b,(2.3)

a→ (b→ c) = b→ (a→ c),(2.4)

1→ a = a, a→ 1 = 1, a→ a = 1,(2.5)

a ≤ b→ c ⇔ b ≤ a→ c,(2.6)

a ≤ b→ a,(2.7)

a ≤ (a→ b)→ b,(2.8)

a→ b ≤ (b→ c)→ (a→ c),(2.9)

b ≤ a ⇒ a↔ b = a→ b = a ∼ b,(2.10)

a ∼ b ≤ a⇔ b ≤ a→ b,(2.11)

a ≤ b ⇒
{

b→ c ≤ a→ c,
c→ a ≤ c→ b,

(2.12)

a ≤ (a ∼ b) ∼ b,(2.13)

a ∼ b ≤ a ∼ (a ∧ b).(2.14)
2
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An equality algebra (X, ∧, ∼, 1) is said to be bounded, if there exists an element
0 ∈ X such that 0 ≤ a for all a ∈ X. In a bounded equality algebra (X, ∧, ∼, 1),
we define the negation “¬” on X by ¬a = a→ 0 = a ∼ 0 for all a ∈ X.

An equality algebra (X, ∧, ∼, 1) is said to be positive implicative (See [3]), if it
satisfies:

(∀a, b, c ∈ X)(a→ (b→ c) = (a→ b)→ (a→ c)).(2.15)

A subset D of X is called a deductive system (or filter) of an equality algebra (X,
∧, ∼, 1) (See [7]), if it satisfies:

1 ∈ D,(2.16)

(∀a, b ∈ X)(a ∈ D, a ≤ b ⇒ b ∈ D),(2.17)

(∀a, b ∈ X)(a ∈ D, a ∼ b ∈ D ⇒ b ∈ D).(2.18)

Lemma 2.3 ([8]). Let (X, ∧, ∼, 1) be an equality algebra. A subset D of X is a
deductive system of X if and only if it satisfies (2.16) and

(∀a, b ∈ X)(a ∈ D, a→ b ∈ D ⇒ b ∈ D).(2.19)

Definition 2.4. Let X be a universal set. Then the pair S := (µS , νS) of two fuzzy
sets µS and νS in X is called

• an intuitionistic fuzzy set in X (See [9]), if it satisfies:

(∀a ∈ X)(0 ≤ µS(a) + νS(a) ≤ 1),(2.20)

• an SR-fuzzy set in X (See [1]), if it satisfies:

(∀a ∈ X)(0 ≤ (µS(a))2 +
√
νS(a) ≤ 1).(2.21)

3. SR-fuzzy subalgebras

Definition 3.1. An SR-fuzzy set S := (µS , νS) in X is called an SR-fuzzy subalgebra
of an equality algebra (X, ∧, ∼, 1) if it satisfies:

(∀x, y ∈ X)

(
(µS(x ∼ y))2 ≥ min

{
(µS(x))2, (µS(y))2

}√
νS(x ∼ y) ≤ max

{√
νS(x),

√
νS(y)

} )
,(3.1)

and

(∀x, y ∈ X)

(
(µS(x ∧ y))2 ≥ min

{
(µS(x))2, (µS(y))2

}√
νS(x ∧ y) ≤ max

{√
νS(x),

√
νS(y)

} )
.(3.2)

Example 3.2. Let X = {0, a, b, 1} be a set with the following Hasse diagram.

rr rr

0

a b

1

�
�

A
A
�
�
A
A

Then (X,∧, 1) is a commutative idempotent integral monoid. We define a binary
operation “∼” on X by the Table 1. Then (X, ∧, ∼, 1) is an equality algebra (See
Example 3.13, [10]).

3
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Table 1. Cayley table for the binary operation “∼”

∼ 0 a b 1
0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

Let µS and νS be fuzzy sets in X given as follows:

X 0 a b 1
µS(x) 0.3 0.5 0.3 0.6
νS(x) 0.52 0.52 0.52 0.33

Then the SR-fuzzy set S := (µS , νS) is given by the following table.

X 0 a b 1
(µS(x))2 0.09 0.25 0.09 0.36√
νS(x) 0.7211 0.7211 0.7211 0.5477

where
√
νS(x) is calculated to four decimal places. By routine calculation, we can

check that S := (µS , νS) is an SR-fuzzy subalgebra of (X, ∧, ∼, 1).

Proposition 3.3. In an equality algebra (X, ∧, ∼, 1), every SR-fuzzy subalgebra
S := (µS , νS) satisfies:

(∀x ∈ X)
(

(µS(1))2 ≥ (µS(x))2),
√
νS(1) ≤

√
νS(x)

)
.(3.3)

(∀x, y ∈ X)

(
(µS(x→ y))2 ≥ min

{
(µS(x))2, (µS(y))2

}√
νS(x→ y) ≤ max

{√
νS(x),

√
νS(y)

} )
.(3.4)

Proof. The result (3.3) is directly induced by (E3) and (3.1). Using (2.1), (3.1) and
(3.2), we have

(µS(x→ y))2 = (µS(x ∼ (x ∧ y)))2 ≥ min
{

(µS(x))2, (µS(x ∧ y))2
}

≥ min
{

(µS(x))2,min
{

(µS(x))2, (µS(y))2
}}

= min
{

(µS(x))2, (µS(y))2
}

and √
νS(x→ y) =

√
νS(x ∼ (x ∧ y)) ≤ max

{√
νS(x),

√
νS(x ∧ y)

}
≤ max

{√
νS(x),max

{√
νS(x),

√
νS(y)

}}
= max

{√
νS(x),

√
νS(y)

}
for all x, y ∈ X, which proves (3.4). �

4
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We have a question: If an SR-fuzzy set S := (µS , νS) satisfies (3.3) or (3.4), then
is it an SR-fuzzy subalgebra of (X, ∧, ∼, 1)? The following example provides a
negative response to that question.

Example 3.4. (1) Consider the equality algebra (X, ∧, ∼, 1) in Example 3.2, and
let µS and νS be fuzzy sets in X given as follows:

X 0 a b 1
µS(x) 0.2 0.4 0.2 0.5
νS(x) 0.54 0.52 0.48 0.43

Then the SR-fuzzy set S := (µS , νS) is given by the following table.

X 0 a b 1
(µS(x))2 0.04 0.16 0.04 0.25√
νS(x) 0.7348 0.7211 0.6928 0.6557

where
√
νS(x) is calculated to four decimal places. Then S := (µS , νS) satisfies

(3.3). But it is not an SR-fuzzy subalgebra of (X, ∧, ∼, 1) since√
νS(a ∧ b) =

√
νS(0) = 0.7348 � 0.7211 = max

{√
νS(a),

√
νS(b)

}
.

(2) Let (X, ∧, ∼, 1) be the equality algebra in Example 3.2. Then the implication
“→” is given by the Table 2.

Table 2. Cayley table for the implication “→”

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Let µS and νS be fuzzy sets in X given as follows:

X 0 a b 1
µS(x) 0.33 0.44 0.39 0.66
νS(x) 0.32 0.32 0.32 0.26

Then the SR-fuzzy set S := (µS , νS) is given by the following table.

X 0 a b 1
(µS(x))2 0.1089 0.1936 0.1521 0.4356√
νS(x) 0.5657 0.5657 0.5657 0.5099

where
√
νS(x) is calculated to four decimal places. Then S := (µS , νS) satisfies

(3.4). But it is not an SR-fuzzy subalgebra of (X, ∧, ∼, 1) since

(µS(a ∧ b))2 = (µS(0))2 = 0.1089 � 0.1521 = min{(µS(a))2, (µS(b))2}.
5
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We search for a condition in which an SR-fuzzy set S := (µS , νS) becomes an
SR-fuzzy subalgebra if it satisfies the condition (3.4).

Theorem 3.5. If an equality algebra (X, ∧, ∼, 1) is linearly ordered, then every
SR-fuzzy set S := (µS , νS) satisfying (3.4) is an SR-fuzzy subalgebra of (X, ∧, ∼,
1).

Proof. Let S := (µS , νS) be an SR-fuzzy set that satisfies the condition (3.4). For
every x, y ∈ X we have x ≤ y or y ≤ x because (X, ∧, ∼, 1) is linearly ordered. If
x ≤ y, then x ∧ y = x and x ∼ y = y ∼ x = y → x by (E2) and (2.10). It follows
from (3.4) that (µS(x ∼ y))2 = (µS(y → x))2 ≥ min

{
(µS(x))2, (µS(y))2

}
and√

νS(x ∼ y) =
√
νS(y → x) ≤ max

{√
νS(x),

√
νS(y)

}
. Since x ∧ y = x, it is clear

that S := (µS , νS) satisfies (3.2). Hence S := (µS , νS) is an SR-fuzzy subalgebra of
(X, ∧, ∼, 1). In the case of y ≤ x, it is proved in the same way. �

4. SR-fuzzy deductive systems

Definition 4.1. Let (X, ∧, ∼, 1) be an equality algebra. An SR-fuzzy set S :=
(µS , νS) in X is called an SR-fuzzy deductive system (or SR-fuzzy filter) of (X, ∧,
∼, 1), if it satisfies:

(∀x ∈ X)
(

(µS(1))2 ≥ (µS(x))2,
√
νS(1) ≤

√
νS(x)

)
,(4.1)

(∀x, y ∈ X)

(
x ≤ y ⇒

{
(µS(x))2 ≤ (µS(y))2√
νS(x) ≥

√
νS(y)

)
,(4.2)

(∀x, y ∈ X)

(
(µS(y))2 ≥ min

{
(µS(x))2, (µS(x ∼ y))2

}√
νS(y) ≤ max

{√
νS(x),

√
νS(x ∼ y)

} )
.(4.3)

Example 4.2. Consider the equality algebra (X, ∧, ∼, 1) in Example 3.2, and let
µS and νS be fuzzy sets in X given as follows:

X 0 a b 1
µS(x) 0.44 0.55 0.44 0.66
νS(x) 0.63 0.43 0.53 0.23

Then the SR-fuzzy set S := (µS , νS) is given by the following table.

X 0 a b 1
(µS(x))2 0.1936 0.3025 0.1936 0.4356√
νS(x) 0.7937 0.6557 0.7280 0.4796

where
√
νS(x) is calculated to four decimal places. By the routine calculations, we

know that S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1).

Example 4.3. Let X := [0, 1]. Define two operations “∧” and “∼” on X as follows:

(∀x, y ∈ X)(x ∧ y = min{x, y}, x ∼ y = 1− |x− y|).
6
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Then (X, ∧, ∼, 1) is an equality algebra. Let µS and νS be fuzzy sets in X which
are defined by

µS(x) :=

{
t if x = 1,
s if x 6= 1,

νS(x) :=

{
α if x = 1,
β if x 6= 1,

where t, s, α, β ∈ [0, 1] such that t > s, α < β, 0 ≤ t2 +
√
α ≤ 1 and 0 ≤ s2 +

√
β ≤ 1.

Then the SR-fuzzy set S := (µS , νS) is calculated as follows:

(µS(x))2 :=

{
t2 if x = 1,
s2 if x 6= 1,

√
νS(x) :=

{ √
α if x = 1,√
β if x 6= 1.

It is routine to verify that S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧,
∼, 1).

Proposition 4.4. Every SR-fuzzy deductive system S := (µS , νS) of an equality
algebra (X, ∧, ∼, 1) satisfies:

(∀x, y ∈ X)


min

{
(µS(x))2, (µS(y))2

}
= (µS(x ∧ y))2

≥ min
{

(µS(x))2, (µS(x→ y))2
}

max
{√

νS(x),
√
νS(y)

}
=
√
νS(x ∧ y)

≤ max
{√

νS(x),
√
νS(x→ y)

}
 .(4.4)

(∀x, y, z ∈ X)

(
(µS(x ∼ z))2 ≥ min

{
(µS(x ∼ y))2, (µS(y ∼ z))2

}√
νS(x ∼ z) ≤ max

{√
νS(x ∼ y),

√
νS(y ∼ z)

} )
.(4.5)

Proof. Let S := (µS , νS) be an SR-fuzzy deductive system of an equality algebra
(X, ∧, ∼, 1). The combination of (2.1) and (4.3) derive to

min
{

(µS(x))2, (µS(x→ y))2
}

= min
{

(µS(x))2, (µS(x ∼ (x ∧ y))2
}

≤ (µS(x ∧ y))2

and

max
{√

νS(x),
√
νS(x→ y)

}
= max

{√
νS(x),

√
νS(x ∼ (x ∧ y))

}
≥
√
νS(x ∧ y)

for all x, y ∈ X. It follows from (2.7) and (4.2) that

(µS(x ∧ y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}
≥ min

{
(µS(x))2, (µS(y))2

}
√
νS(x ∧ y) ≤ max

{√
νS(x),

√
νS(x→ y)

}
≤ max

{√
νS(x),

√
νS(y)

}
for all x, y ∈ X. Since x ∧ y ≤ x and x ∧ y ≤ y, we have

(µS(x ∧ y))2 ≤ min
{

(µS(x))2, (µS(y))2
}

√
νS(x ∧ y) ≥ max

{√
νS(x),

√
νS(y)

}
for all x, y ∈ X by (4.2). This proves (4.4). The result (4.5) comes from the
combination of (E2), (E7), (4.2) and (4.3). �

7
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Theorem 4.5. Let (X, ∧, ∼, 1) be an equality algebra. An SR-fuzzy set S :=
(µS , νS) in X is an SR-fuzzy deductive system of (X, ∧, ∼, 1) if and only if it
satisfies (4.1) and

(∀x, y ∈ X)

(
(µS(y))2 ≥ min

{
(µS(x))2, (µS(x→ y))2

}√
νS(y) ≤ max

{√
νS(x),

√
νS(x→ y)

} )
.(4.6)

Proof. Assume that S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1).
For every x, y ∈ X, we have

(µS(y))2
(4.2)

≥ (µS(x ∧ y))2
(4.3)

≥ min
{

(µS(x))2, (µS(x ∼ (x ∧ y)))2
}

(2.1)
= min

{
(µS(x))2, (µS(x→ y))2

}
and √

νS(y)
(4.2)

≤
√
νS(x ∧ y)

(4.3)

≤ max
{√

νS(x),
√
νS(x ∼ (x ∧ y))

}
(2.1)
= max

{√
νS(x),

√
νS(x→ y)

}
.

Conversely, let S := (µS , νS) be an SR-fuzzy set in X that satisfies (4.1) and
(4.6). Let x, y ∈ X, If x ≤ y, then x→ y = 1 by (2.3), and so

(µS(x))2 = min
{

(µS(x))2, (µS(1))2
}

= min
{

(µS(x))2, (µS(x→ y))2
}

≤ (µS(y))2

and √
νS(x) = max

{√
νS(x),

√
νS(1)

}
= max

{√
νS(x),

√
νS(x→ y)

}
≥
√
νS(y)

by (4.1) and (4.6). It follows from (2.11) that (µS(x ∼ y))2 ≤ (µS(x → y))2 and√
νS(x ∼ y) ≥

√
νS(x→ y). Hence

(µS(y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}
≥ min

{
(µS(x))2, (µS(x ∼ y))2

}
and √

νS(y) ≤ max
{√

νS(x),
√
νS(x→ y)

}
≤ max

{√
νS(x),

√
νS(x ∼ y)

}
for all x, y ∈ X. Therefore S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧,
∼, 1). �

Corollary 4.6. If S := (µS , νS) is an SR-fuzzy deductive system of an equality

algebra (X, ∧, ∼, 1), then (µS(x))2 ≤ (µS(y))2 and
√
νS(x→ y) ≥

√
νS(1) for all

x, y ∈ X with (µS(x→ y))2 = (µS(1))2 and
√
νS(x→ y) =

√
νS(1).

8
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Proof. Let x, y ∈ X be such that (µS(x → y))2 = (µS(1))2 and
√
νS(x→ y) =√

νS(1). Then

(µS(x))2 = min
{

(µS(x))2, (µS(1))2
}

= min
{

(µS(x))2, (µS(x→ y))2
}

≤ (µS(y))2

and √
νS(x) = max

{√
νS(x),

√
νS(1)

}
= max

{√
νS(x),

√
νS(x→ y)

}
≥
√
νS(y).

This completes the proof. �

Proposition 4.7. Every SR-fuzzy deductive system S := (µS , νS) of an equality
algebra (X, ∧, ∼, 1) satisfies:{

(µS(x→ z))2 ≥ min
{

(µS(x→ y))2, (µS(y → z))2
}√

νS(x→ z) ≤ max
{√

νS(x→ y),
√
νS(y → z)

}(4.7)

x ≤ y ⇒

{
(µS(x))2 = min

{
(µS(y))2, (µS(y → x))2

}√
νS(x) = max

{√
νS(y),

√
νS(y → x)

}
(4.8)

for all x, y, z ∈ X.

Proof. Let S := (µS , νS) be an SR-fuzzy deductive system of an equality algebra
(X, ∧, ∼, 1). By the combination of (2.9), (4.2) and (4.6), we have

(µS(x→ z))2 ≥ min
{

(µS((y → z)→ (x→ z)))2, (µS(y → z))2
}

≥ min
{

(µS(x→ y))2, (µS(y → z))2
}

and √
νS(x→ z) ≤ max

{√
νS((y → z)→ (x→ z)),

√
νS(y → z)

}
≤ max

{√
νS(x→ y),

√
νS(y → z)

}
for all x, y, z ∈ X. This proves (4.7). Let x, y ∈ X be such that x ≤ y. Then

(µS(x))2 ≤ (µS(y))2 and
√
νS(x) ≥

√
νS(y) by (4.2). Also, we have (µS(x))2 ≤

(µS(y → x))2 and
√
νS(x) ≥

√
νS(y → x) by the combination of (2.7) and (4.2). It

follows from Theorem 4.5 that

(µS(x))2 ≥ min
{

(µS(y))2, (µS(y → x))2
}

≥ min
{

(µS(y))2, (µS(x))2
}

= (µS(x))2

9
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and √
νS(x) ≤ max

{√
νS(y),

√
νS(y → x)

}
≤ max

{√
νS(y),

√
νS(x)

}
=
√
νS(x).

Hence (µS(x))2 = min
{

(µS(y))2, (µS(y → x))2
}

and√
νS(x) = max

{√
νS(y),

√
νS(y → x)

}
for all x, y ∈ X with x ≤ y. �

Theorem 4.8. Let (X, ∧, ∼, 1) be an equality algebra. An SR-fuzzy set S :=
(µS , νS) in X is an SR-fuzzy deductive system of (X, ∧, ∼, 1) if and only if it
satisfies:

x ≤ y → z ⇒

{
(µS(z))2 ≥ min

{
(µS(x))2, (µS(y))2

}√
νS(z) ≤ max

{√
νS(x),

√
νS(y)

}
(4.9)

for all x, y, z ∈ X.

Proof. Assume that S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼,
1). Let x, y, z ∈ X be such that x ≤ y → z. Then (µS(x))2 ≤ (µS(y → z))2 and√
νS(x) ≥

√
νS(y → z) by (4.2). It follows from (4.6) that

(µS(z))2 ≥ min
{

(µS(y))2, (µS(y → z))2
}
≥ min

{
(µS(y))2, (µS(x))2

}
and √

νS(z) ≤ max
{√

νS(y),
√
νS(y → z)

}
≤ max

{√
νS(y),

√
νS(x)

}
.

Conversely, let S := (µS , νS) be an SR-fuzzy set in X that satisfies (4.9). The
combination of (2.3) and (2.5) induces x ≤ x → 1 and x → y ≤ x → y for all
x, y ∈ X. Using (4.9), we have

(µS(1))2 ≥ min
{

(µS(x))2, (µS(x))2
}

= (µS(x))2,√
νS(1) ≤ max

{√
νS(x),

√
νS(x)

}
=
√
νS(x),

(µS(y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}
,√

νS(y) ≤ max
{√

νS(x),
√
νS(x→ y)

}
,

for all x, y ∈ X. Therefore S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧,
∼, 1) by Theorem 4.5. �

Corollary 4.9. Every SR-fuzzy deductive system S := (µS , νS) of (X, ∧, ∼, 1)
satisfies:

(∀x, y ∈ X)

(
x ∼ y ≤ x ⇒

{
(µS(y))2 ≥ min

{
(µS(x))2, (µS(y))2

}√
νS(y) ≤ max

{√
νS(x),

√
νS(y)

} )
.

Proof. Let x, y ∈ X be such that x ∼ y ≤ x. Then y ≤ x → y by (2.11). Thus the
required result comes from (4.9). �

10
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Lemma 4.10 ([3]). An equality algebra (X, ∧, ∼, 1) is positive implicative if and
only if it satisfies:

(∀x, y ∈ X)(x→ (x→ y) = x→ y).(4.10)

Theorem 4.11. Let S := (µS , νS) be an SR-fuzzy set in a positive implicative
equality algebra (X, ∧, ∼, 1). Then the following are equivalent:

(1) S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1),
(2) S := (µS , νS) satisfies:{

(µS(y → x))2 ≥ min
{

(µS(z → (y → (y → x))))2, (µS(z))2
}√

νS(y → x) ≤ max
{√

νS(z → (y → (y → x))),
√
νS(z)

}(4.11)

for all x, y, z ∈ X,
(3) S := (µS , νS) satisfies:{

(µS(x→ z))2 ≥ min
{

(µS(x→ y))2, (µS(x→ (y → z)))2
}√

νS(x→ z) ≤ max
{√

νS(x→ y),
√
νS(x→ (y → z))

}(4.12)

for all x, y, z ∈ X.

Proof. Let (X, ∧, ∼, 1) be a positive implicative equality algebra. Suppose S :=
(µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1). Then

(µS(y → x))2
(4.10)

= (µS(y → (y → x)))2

(4.6)

≥ min
{

(µS(z → (y → (y → x))))2, (µS(z))2
}

and √
νS(y → x)

(4.10)
=

√
νS(y → (y → x))

(4.6)

≥ min
{√

νS(z → (y → (y → x))),
√
νS(z)

}
for all x, y, z ∈ X. Thus (4.11) is valid.

Suppose S := (µS , νS) satisfies (4.11). Then we have

min
{

(µS(x→ y))2, (µS(x→ (y → z)))2
}

(2.15)
= min

{
(µS(x→ y))2, (µS((x→ y)→ (x→ z)))2

}
(4.10)

= min
{

(µS(x→ y))2, (µS((x→ y)→ (x→ (x→ z))))2
}

(4.11)

≤ (µS(x→ z))2

11



Y. B. Jun/Ann. Fuzzy Math. Inform. x (202y), No. x, xx–xx

and

max
{√

νS(x→ y),
√
νS(x→ (y → z))

}
(2.15)

= max
{√

νS(x→ y),
√
νS((x→ y)→ (x→ z))

}
(4.10)

= max
{√

νS(x→ y),
√
νS((x→ y)→ (x→ (x→ z)))

}
(4.11)

≥
√
νS(x→ z),

which proves (4.12).
Suppose S := (µS , νS) satisfies (4.12). Putting x = 1 in (4.12) and using (2.5),

we derive {
(µS(z))2 ≥ min

{
(µS(y))2, (µS(y → z))2

}√
νS(z) ≤ max

{√
νS(y),

√
νS(y → z)

}(4.13)

for all y, z ∈ X. Also, if we put z = 1 in (4.13) and use (2.5), then we have

(µS(1))2 ≥ (µS(y))2 and
√
νS(1) ≤

√
νS(y) for all y ∈ X. Thus S := (µS , νS) is an

SR-fuzzy deductive system of (X, ∧, ∼, 1) by Theorem 4.5. �

We establish the relationship between SR-fuzzy subalgebra and SR-fuzzy deduc-
tive system.

Theorem 4.12. In an equality algebra (X, ∧, ∼, 1), every SR-fuzzy deductive system
is an SR-fuzzy subalgebra.

Proof. Let S := (µS , νS) be an SR-fuzzy deductive system of (X, ∧, ∼, 1). Let
x, y ∈ X. Since x ≤ (x ∼ y) ∼ y by (2.13), we have

(µS(x))2 ≤ (µS((x ∼ y) ∼ y))2 = (µS(y ∼ (x ∼ y)))2

and √
νS(x) ≥

√
νS((x ∼ y) ∼ y) =

√
νS(y ∼ (x ∼ y))

by (E2) and (4.2). It follows from (4.3) that

(µS(x ∼ y))2 ≥ min
{

(µS(y))2, (µS(y ∼ (x ∼ y)))2
}

≥ min{(µS(x))2, (µS(y))2}
(4.14)

and √
νS(x ∼ y) ≤ max

{√
νS(y),

√
νS(y ∼ (x ∼ y))

}
≤ max{

√
νS(x),

√
νS(y)}.

(4.15)

Since x ∼ y ≤ x ∼ (x ∧ y) by (2.14), we get

(µS(x ∼ y))2 ≤ (µS(x ∼ (x ∧ y)))2 and
√
νS(x ∼ y) ≥

√
νS(x ∼ (x ∧ y))

12



Y. B. Jun/Ann. Fuzzy Math. Inform. x (202y), No. x, xx–xx

by (4.2). It follows from (4.3), (4.14) and (4.15) that

(µS(x ∧ y))2 ≥ min
{

(µS(x))2, (µS(x ∼ (x ∧ y)))2
}

≥ min{(µS(x))2, (µS(x ∼ y))2}
≥ min{(µS(x))2, (µS(y))2}

and √
νS(x ∧ y) ≤ max

{√
νS(x),

√
νS(x ∼ (x ∧ y))

}
≤ max{

√
νS(x),

√
νS(x ∼ y)}

≤ max{
√
νS(x),

√
νS(y)}.

Therefore S := (µS , νS) is an SR-fuzzy subalgebra of (X, ∧, ∼, 1). �

The example below shows that the convese of Theorem 4.12 may not be true.

Example 4.13. Let X = {0, 1, a, b, c} be a set with the following Hasse diagram.rr rrr0a
b c

1

JJ





JJ

and define a binary operation “∼” on X by the Table 3.

Table 3. Cayley table for the binary operation “∼”

∼ 0 a b c 1
0 1 0 0 0 0
a 0 1 c b a
b 0 c 1 a b
c 0 b a 1 c
1 0 a b c 1

Then (X, ∧, ∼, 1) is an equality algebra (See Example 4.2, CGASA7-33), and the
implication “→” is calculated by the Table 4.

Table 4. Cayley table for the implication “→”

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Let µS and νS be fuzzy sets in X given as follows:
13
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X 0 a b c 1
µS(x) 0.58 0.32 0.58 0.58 0.32
νS(x) 0.37 0.71 0.37 0.37 0.71

Then the SR-fuzzy set S := (µS , νS) is given by the following table.

X 0 a b c 1
(µS(x))2 0.3364 0.1024 0.3364 0.3364 0.1024√
νS(x) 0.6083 0.8426 0.6083 0.6083 0.8426

where
√
νS(x) is calculated to four decimal places. It is routine to verify that

S := (µS , νS) is an SR-fuzzy subalgebra of (X, ∧, ∼, 1). But it is not an SR-fuzzy
deductive system of (X, ∧, ∼, 1) since

(µS(a))2 = 0.1024 � 0.3364 = min{(µS(b))2, (µS(b ∼ a))2}

and/or
√
νS(a) = 0.8426 � 0.6083 = max{

√
νS(b),

√
νS(b ∼ a)}.

Let S := (µS , νS) be an SR-fuzzy set in X. For every (t, s) ∈ [0, 1] × [0, 1] we
consider the next sets:

µS(≥ t) := {x ∈ X | (µS(x))2 ≥ t},

νS(≤ s) := {x ∈ X |
√
νS(x) ≤ s},

Sst := µS(≥ t) ∩ νS(≤ s).

Theorem 4.14. Let (X, ∧, ∼, 1) be an equality algebra. Then an SR-fuzzy set
S := (µS , νS) in X is an SR-fuzzy deductive system of (X, ∧, ∼, 1) if and only if
the nonempty sets µS(≥ t) and νS(≤ s) are deductive systems of (X, ∧, ∼, 1) for
all (t, s) ∈ [0, 1]× [0, 1].

Proof. Suppose S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1) and let
(t, s) ∈ [0, 1]×[0, 1] be such that µS(≥ t) 6= ∅ 6= νS(≤ s). Then there exist x ∈ µS(≥
t) and a ∈ νS(≤ s). Thus (µS(1))2 ≥ (µS(x))2 ≥ t and

√
νS(1) ≤

√
νS(a) ≤ s.

So 1 ∈ µS(≥ t) ∩ νS(≤ s). Let x, y, a, b ∈ X be such that x, x → y ∈ µS(≥ t) and
a, a→ b ∈ νS(≤ s). Using (4.6) induces

(µS(y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}
≥ t

and
√
νS(b) ≤ max

{√
νS(a),

√
νS(a→ b)

}
≤ s. Hence y ∈ µS(≥ t) and b ∈ νS(≤

s). Therefore µS(≥ t) and νS(≤ s) are deductive systems of (X, ∧, ∼, 1) by Lemma
2.3.

Conversely, suppose the nonempty sets µS(≥ t) and νS(≤ s) are deductive sys-
tems of (X, ∧, ∼, 1) for all (t, s) ∈ [0, 1] × [0, 1]. If (µS(1))2 < (µS(x))2 or√
νS(1) >

√
νS(x) for some x ∈ X, then (µS(1))2 < tx ≤ (µS(x))2 or

√
νS(1) >

sx ≥
√
νS(x) for some (tx, sx) ∈ [0, 1] × [0, 1]. It follows that x ∈ µS(≥ tx)

or x ∈ νS(≤ sx) but 1 /∈ µS(≥ tx) ∩ νS(≤ sx). This is a contradiction, and

so (µS(1))2 ≥ (µS(x))2 and
√
νS(1) ≤

√
νS(x) for all x ∈ X. Assume that

14
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(µS(y))2 < min
{

(µS(x))2, (µS(x→ y))2
}

or√
νS(b) > max

{√
νS(a),

√
νS(a→ b)

}
for some x, y, a, b ∈ X. Then (µS(y))2 < ty ≤ min

{
(µS(x))2, (µS(x→ y))2

}
or√

νS(b) > sb ≥ max
{√

νS(a),
√
νS(a→ b)

}
for some (ty, sb) ∈ [0, 1] × [0, 1]. It follows that Let x, x → y ∈ µS(≥ ty) or a, a →
b ∈ νS(≤ sb). Since µS(≥ ty) and νS(≤ sb) are deductive systems of (X, ∧, ∼,
1), we have y ∈ µS(≥ ty) and b ∈ νS(≤ sb). Then (µS(y))2 ≥ ty and

√
νS(b) ≤

sb, which is a contradiction. Thus (µS(y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}

and√
νS(y) ≤ max

{√
νS(x),

√
νS(x→ y)

}
for all x, y ∈ X. It follows from Theorem

4.5 that S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1). �

Corollary 4.15. Let (X, ∧, ∼, 1) be an equality algebra. If an SR-fuzzy set S :=
(µS , νS) in X is an SR-fuzzy deductive system of (X, ∧, ∼, 1), then the sets XµS :=

{x ∈ X | (µS(x))2 = (µS(1))2} and XνS := {x ∈ X |
√
νS(x) =

√
νS(1)} are

deductive systems of (X, ∧, ∼, 1).

Theorem 4.16. Let (X, ∧, ∼, 1) be an equality algebra. For a subset D of X, let
S := (µS , νS) be an SR-fuzzy set in X which is defined as follows:

(µS(x))2 :=

{
t ∈ (0, 1] if x ∈ D,
0 otherwise,

√
νS(x) :=

{
s ∈ [0, 1) if x ∈ D,
1 otherwise.

Then D is a deductive system of (X, ∧, ∼, 1) if and only if S := (µS , νS) is an
SR-fuzzy deductive system of (X, ∧, ∼, 1).

Proof. Suppose D is a deductive system of (X, ∧, ∼, 1). Since 1 ∈ D, it is clear that

(µS(1))2 = t ≥ (µS(x))2 and
√
νS(1) = s ≤

√
νS(x) for all x ∈ X. Let x, y ∈ X. If

x ∈ D and x→ y ∈ D, then y ∈ D and so

(µS(y))2 = t = min
{

(µS(x))2, (µS(x→ y))2
}

and
√
νS(y) = s = max

{√
νS(x),

√
νS(x→ y)

}
. If x /∈ D or x → y /∈ D, then

(µS(x))2 = 0 and
√
νS(x) = 1, or (µS(x → y))2 = 0 and

√
νS(x→ y) = 1. Thus

(µS(y))2 ≥ 0 = min
{

(µS(x))2, (µS(x→ y))2
}

and√
νS(y) ≤ 1 = max

{√
νS(x),

√
νS(x→ y)

}
.

So S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼, 1) by Theorem 4.5.
Conversely, suppose S := (µS , νS) is an SR-fuzzy deductive system of (X, ∧, ∼,

1). Then µS(≥ t) and νS(≤ s) are nonempty deductive systems of (X, ∧, ∼, 1) (See
Theorem 4.14). For every x ∈ µS(≥ t) and a ∈ νS(≤ s), we have

(µS(1))2 ≥ (µS(x))2 ≥ t

and
√
νS(1) ≤

√
νS(a) ≤ s. Thus 1 ∈ D. Let x, y ∈ X be such that x ∈ D and

x → y ∈ D. Then (µS(x))2 = (µS(x → y))2 = t and
√
νS(x) =

√
νS(x→ y) = s.
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Then (µS(y))2 ≥ min
{

(µS(x))2, (µS(x→ y))2
}

= t and√
νS(y) ≤ max

{√
νS(x),

√
νS(x→ y)

}
= s.

It follows that (µS(y))2 = t and
√
νS(y) = s which shows that y ∈ D. Thus D is a

deductive system of (X, ∧, ∼, 1) by Lemma 2.3. �

5. Conclusion and future work

Intuitionistic fuzzy sets are a mathematical model that extends the concept of a
fuzzy set by incorporating the idea of uncertainty or hesitation. In 2022, Al-shami
et al. [1] presented a novel extension of intuitionistic fuzzy set called SR-fuzzy sets
which is not obtained from q-rung orthopair fuzzy sets. And then, they compared it
with the other types of fuzzy sets. Also, they introduced the concepts of weighted
aggregated operators for SR-fuzzy sets, and described MADM problems under these
operators. In this paper, we applied the SR-fuzzy set introduced by Al-shami et al.
to the equality algebras. We looked at various properties, including interrelationships
and characterizations, while discussing SR-fuzzification of subalgebras and deductive
systems, which are substructures of equality algebra. In the future, we will study
SR-fuzzification of substructures in various types of logical algebras, using the ideas
or the results covered in this paper.
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